#### 612-624-3321

Call the Wilson Library front desk to get help by phone during open hours, or leave a voicemail for next-day follow-up.

- Groups and Symmetry byISBN: 0387966757Publication Date: 1988-10-25Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the highlights of elementary group theory. Written in an informal style, the material is divided into short sections each of which deals with an important result or a new idea. Throughout the book, the emphasis is placed on concrete examples, many of them geometrical in nature, so that finite rotation groups and the seventeen wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using group actions on trees.
- An Introduction to Mathematical Cryptography byISBN: 9781493917112Publication Date: 2014-09-11This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie-Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, anddigital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption.
- The Symmetric Group byISBN: 9781475768046Publication Date: 2013-03-09The original text has stayed much the same, the major change being in the treatment of the hook formula which is now based on the beautiful Novelli-Pak-Stoyanovskii bijection (NPS 97]. I have also added a chapter on applications of the material from the first edition. This includes Stanley's theory of differential posets (Stn 88, Stn 90] and Fomin's related concept of growths (Fom 86, Fom 94, Fom 95], which extends some of the combinatorics of Sn-representations. Next come a couple of sections showing how groups acting on posets give rise to interesting representations that can be used to prove unimodality results (Stn 82]. Finally, we discuss Stanley's symmetric function analogue of the chromatic polynomial of a graph (Stn 95, Stn ta].
- Algebra byISBN: 9781461300410Publication Date: 2012-12-06This book is intended as a basic text for a one-year course in Algebra at the graduate level, or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. For the new edition, the author has added exercises and made numerous corrections to the text.

- The Arithmetic of Elliptic Curves byISBN: 9780387094946Publication Date: 2009-04-20The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
- Elliptic Curves byISBN: 9781419652578Publication Date: 2006-11-20This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in advanced undergraduate or first-year graduate courses. Reviews Indeed, the book is affordable (in fact, the most affordable of all references on the subject), but also a high quality work and a complete introduction to the rich theory of the arithmetic of elliptic curves, with numerous examples and exercises for the reader, many interesting remarks and an updated bibliography.
- Rational Points on Elliptic Curves byISBN: 9783319185873Publication Date: 2015-06-24The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This volume stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. Topics covered include the geometry and group structure of elliptic curves, the Nagell-Lutz theorem describing points of finite order, the Mordell-Weil theorem on the finite generation of the group of rational points, the Thue-Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves.
- Number Theory in Function Fields byISBN: 9781475760460Publication Date: 2013-04-18Elementary number theory is concerned with the arithmetic properties of the ring of integers, Z, and its field of fractions, the rational numbers, Q. Early on in the development of the subject it was noticed that Z has many properties in common with A = IF[T], the ring of polynomials over a finite field. Both rings are principal ideal domains, both have the property that the residue class ring of any non-zero ideal is finite, both rings have infinitely many prime elements, and both rings have finitely many units. Thus, one is led to suspect that many results which hold for Z have analogues of the ring A. This is indeed the case. The first four chapters of this book are devoted to illustrating this by presenting, for example, analogues of the little theorems of Fermat and Euler, Wilson's theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlet's theorem on primes in an arithmetic progression. All these results have been known for a long time, but it is hard to locate any exposition of them outside of the original papers. Algebraic number theory arises from elementary number theory by considering finite algebraic extensions K of Q, which are called algebraic number fields, and investigating properties of the ring of algebraic integers OK C K, defined as the integral closure of Z in K.

Last Updated: May 1, 2024 9:34 AM

URL: https://libguides.umn.edu/drp-math

- Our approach to inclusion, diversity, equity, and accessibility
- Accessibility services
- Privacy statement
- All policies

- Fund the support Libraries bring to research and learning.
- Give to the Libraries

Call the Wilson Library front desk to get help by phone during open hours, or leave a voicemail for next-day follow-up.

Use the web form to email us. We respond within 1 to 2 business days.

499 Wilson Library

309 19

Minneapolis, MN 55455

Real people, no bots. All day and night, with help from librarians everywhere.

© 2023 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.

Acceptable Use of IT Resources

opens an external site

24/7 chat