Artificial Intelligence & Machine Learning
- (Open Access) Alleys of Your Mind byISBN: 9783957960658Publication Date: 2015-10-23What does thinking mean in the age of Artificial Intelligence? How is big-scale computation transforming the way our brains function? This collection discusses these pressing questions by looking beyond instrumental rationality. Exploring recent developments as well as examples from the history of cybernetics, the book uncovers the positive role played by errors and traumas in the construction of our contemporary technological minds. With texts by Benjamin Bratton, Orit Halpern, Adrian Lahoud, Jon Lindblom, Catherine Malabou, Reza Negarestani, Luciana Parisi, Matteo Pasquinelli, Ana Teixeira Pinto, Michael Wheeler, Charles Wolfe, and Ben Woodard.
- (Open Access) Human and Machine Consciousness byISBN: 9781783742981Publication Date: 2018-03-07Consciousness is widely perceived as one of the most fundamental, interesting and difficult problems of our time. However, we still know next to nothing about the relationship between consciousness and the brain and we can only speculate about the consciousness of animals and machines. Human and Machine Consciousness presents a new foundation for the scientific study of consciousness. It sets out a bold interpretation of consciousness that neutralizes the philosophical problems and explains how we can make scientific predictions about the consciousness of animals, brain-damaged patients and machines. Gamez interprets the scientific study of consciousness as a search for mathematical theories that map between measurements of consciousness and measurements of the physical world. We can use artificial intelligence to discover these theories and they could make accurate predictions about the consciousness of humans, animals and artificial systems. Human and Machine Consciousness also provides original insights into unusual conscious experiences, such as hallucinations, religious experiences and out-of-body states, and demonstrates how ‘designer' states of consciousness could be created in the future. Gamez explains difficult concepts in a clear way that closely engages with scientific research. His punchy, concise prose is packed with vivid examples, making it suitable for the educated general reader as well as philosophers and scientists. Problems are brought to life in colourful illustrations and a helpful summary is given at the end of each chapter. The endnotes provide detailed discussions of individual points and full references to the scientific and philosophical literature.
- (Open Access) Human Rights in the Age of Platforms byISBN: 9780262353946Publication Date: 2019-10-25Scholars from across law and internet and media studies examine the human rights implications of today''s platform society. Today such companies as Apple, Facebook, Google, Microsoft, and Twitter play an increasingly important role in how users form and express opinions, encounter information, debate, disagree, mobilize, and maintain their privacy. What are the human rights implications of an online domain managed by privately owned platforms? According to the Guiding Principles on Business and Human Rights, adopted by the UN Human Right Council in 2011, businesses have a responsibility to respect human rights and to carry out human rights due diligence. But this goal is dependent on the willingness of states to encode such norms into business regulations and of companies to comply. In this volume, contributors from across law and internet and media studies examine the state of human rights in today''s platform society. The contributors consider the "datafication" of society, including the economic model of data extraction and the conceptualization of privacy. They examine online advertising, content moderation, corporate storytelling around human rights, and other platform practices. Finally, they discuss the relationship between human rights law and private actors, addressing such issues as private companies'' human rights responsibilities and content regulation.
- (Open Access) Intelligent Human-Machine Collaboration byISBN: 9780309262644Publication Date: 2012-09-30On June 12-14, 2012, the Board on Global Science and Technology held an international, multidisciplinary workshop in Washington, D.C., to explore the challenges and advances in intelligent human-machine collaboration (IH-MC), particularly as it applies to unstructured environments. This workshop convened researchers from a range of science and engineering disciplines, including robotics, human-robot and human-machine interaction, software agents and multi-agentsystems, cognitive sciences, and human-machine teamwork. Participants were drawn from research organizations in Australia, China, Germany, Israel, Italy, Japan, the Netherlands, the United Arab Emirates, the United Kingdom, and the United States. The first day of the workshop participants worked to determine how advances in IH-MC over the next two to three years could be applied solving a variety of different real-world scenarios in dynamic unstructured environments, ranging from managing a natural disaster to improving small-lot agile manufacturing. On the second day of the workshop, participants organized into small groups for a deeper exploration of research topics that had arisen, discussion of common challenges, hoped-for breakthroughs, and the national, transnational, and global context in which this research occurs. Day three of the workshop consisted of small groups focusing on longer term research deliverables, as well as identifying challenges and opportunities from different disciplinary and cultural perspectives. In addition, ten participants gave presentations on their research, ranging from human-robot communication, to disaster response robots, to human-in-the-loop control of robot systems. Intelligent Human-Machine Collaboration: Summary of a Workshop describes in detail the discussions and happenings of the three day workshop.
- (Open Access) Tech Giants Artificial Intelligence and the Future of Journalism byISBN: 9781138499973Publication Date: 2019-02-25This book examines the impact of the "Big Five" technology companies - Apple, Alphabet/Google, Amazon, Facebook and Microsoft - on journalism and the media industries. It looks at the current role of algorithms and artificial intelligence in curating how we consume media and their increasing influence on the production of the news. Exploring the changes that the technology industry and automation have made in the past decade to the production, distribution and consumption of news globally, the book considers what happens to journalism once it is produced and enters the media ecosystems of the internet tech giants - and the impact of social media and AI on such things as fake news in the post-truth age. The audience for this book are students and researchers working in the field of digital media, and journalism studies or media studies more generally. It will also be useful to those who are looking for extended case studies of the role taken by tech giants such as Facebook and Google in the fake news scandal, or the role of Jeff Bezos in transforming The Washington Post.
- Artificial Intelligence -- When Do Machines Take Over? byISBN: 9783662597170Publication Date: 2020Everybody knows them. Smartphones that talk to us, wristwatches that record our health data, workflows that organize themselves automatically, cars, airplanes and drones that control themselves, traffic and energy systems with autonomous logistics or robots that explore distant planets are technical examples of a networked world of intelligent systems. Machine learning is dramatically changing our civilization. We rely more and more on efficient algorithms, because otherwise we will not be able to cope with the complexity of our civilizing infrastructure. But how secure are AI algorithms? This challenge is taken up here: Complex neural networks are fed and trained with huge amounts of data (big data). The number of necessary parameters explodes exponentially. Nobody knows exactly what is going on in these "black boxes". In machine learning we need more explainability and accountability of causes and effects in order to be able to decide ethical and legal questions of responsibility (e.g. in autonomous driving or medicine). Besides causal learning, we also analyze procedures of tests and verification to get certified AI-programs. Since its inception, AI research has been associated with great visions of the future of mankind. It is already a key technology that will decide the global competition of social systems. "Artificial Intelligence and Responsibility" is another central supplement to this book: How should we secure our individual liberty rights in the AI world? This book is a plea for technology design: AI must prove itself as a service in society.
- Artificial intelligence for business byISBN: 9783319974361Publication Date: 2019This book offers a practical guide to artificial intelligence (AI) techniques that are used in business. The book does not focus on AI models and algorithms, but instead provides an overview of the most popular and frequently used models in business. This allows the book to easily explain AI paradigms and concepts for business students and executives. Artificial Intelligence for Business is divided into six chapters. Chapter 1 begins with a brief introduction to AI and describes its relationship with machine learning, data science and big data analytics. Chapter 2 presents core machine learning workflow and the most effective machine learning techniques. Chapter 3 deals with deep learning, a popular technique for developing AI applications. Chapter 4 introduces recommendation engines for business and covers how to use them to be more competitive. Chapter 5 features natural language processing (NLP) for sentiment analysis focused on emotions. With the help of sentiment analysis, businesses can understand their customers better to improve their experience, which will help the businesses change their market position. Chapter 6 states potential business prospects of AI and the benefits that companies can realize by implementing AI in their processes.
- Artificial psychology : psychological modeling and testing of AI systems byISBN: 3030170810Publication Date: 2020This book explores the subject of artificial psychology and how the field must adapt human neuro-psychological testing techniques to provide adequate cognitive testing of advanced artificial intelligence systems. It shows how classical testing methods will reveal nothing about the cognitive nature of the systems and whether they are learning, reasoning, and evolving correctly; for these systems, the authors outline how testing techniques similar to/adapted from human psychological testing must be adopted, particularly in understanding how the system reacts to failure or relearning something it has learned incorrectly or inferred incorrectly. The authors provide insights into future architectures/capabilities that artificial cognitive systems will possess and how we can evaluate how well they are functioning. It discusses at length the notion of human/AI communication and collaboration and explores such topics as knowledge development, knowledge modeling and ambiguity management, artificial cognition and self-evolution of learning, artificial brain components and cognitive architecture, and artificial psychological modeling. Explores the concepts of Artificial Psychology and Artificial Neuroscience as applied to advanced artificially cognitive systems; Provides insight into the world of cognitive architectures and biologically-based computing designs which will mimic human brain functionality in artificial intelligent systems of the future; Provides description and design of artificial psychological modeling to provide insight into how advanced artificial intelligent systems are learning and evolving; Explores artificial reasoning and inference architectures and the types of modeling and testing that will be required to "trust" an autonomous artificial intelligent systems.
- From tool to partner : the evolution of human-computer interaction byISBN: 9781627058896Publication Date: 2017This is the first comprehensive history of human-computer interaction (HCI). Whether you are a user-experience professional or an academic researcher, whether you identify with computer science, human factors, information systems, information science, design, or communication, you can discover how your experiences fit into the expanding field of HCI. You can determine where to look for relevant information in other fields--and where you won't find it. This book describes the different fields that have participated in improving our digital tools. It is organized chronologically, describing major developments across fields in each period. Computer use has changed radically, but many underlying forces are constant. Technology has changed rapidly, human nature very little. An irresistible force meets an immovable object. The exponential rate of technological change gives us little time to react before technology moves on. Patterns and trajectories described in this book provide your best chance to anticipate what could come next. We have reached a turning point. Tools that we built for ourselves to use are increasingly influencing how we use them, in ways that are planned and sometimes unplanned. The book ends with issues worthy of consideration as we explore the new world that we and our digital partners are shaping.
- Human/Machine byISBN: 9780749484255Publication Date: 2019-07-03Will the workplace of the future be overrun by machines and robots? Are the new frontiers of artificial intelligence (AI) on the cusp of dethroning us in efficiency, intelligence and innovative potential? Automation and AI will augment our human world and potential. The winners of the future of work are those that harness the power of machines to their advantage. Human/Machine is the only guide you need to understand the fourth industrial revolution. It sets out a road map to the challenges ahead, but also unlocks the wondrous opportunities that it offers. Human/Machine explores how we will work symbiotically with machines, detailing how institutions, companies, individuals and education providers will evolve to integrate seamlessly with new technologies. With exclusive case studies, this book offers a glimpse into the future and details how top companies are already thriving on this very special relationship. From gamification in job training to project management teams integrated with bots and predictive technologies that fix problems in the supply chain before they happen, the authors deliver a powerful manifesto for the adoption and celebration of automation and AI. In a much more fluid, skills-based economy, we will all need to prove our worth and future-proof our skills base. This book offers a blueprint to avoid being left behind and unearth the opportunities unique to human-machine partnership ecosystems.
- Machine Learning and AI for Healthcare byISBN: 1484237986Publication Date: 2019-02-05Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You'll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You'll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll Learn Gain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agents Who This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence - with the aim of improving patient health, population health and facilitating significant care-payer cost savings.
- Machine learning and artificial intelligence byISBN: 9783030266226Publication Date: 2020 FormatThis book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations.
- Machine Learning for Ecology and Sustainable Natural Resource Management byISBN: 9783319969787Publication Date: 2018Ecologists and natural resource managers are charged with making complex management decisions in the face of a rapidly changing environment resulting from climate change, energy development, urban sprawl, invasive species and globalization. Advances in Geographic Information System (GIS) technology, digitization, online data availability, historic legacy datasets, remote sensors and the ability to collect data on animal movements via satellite and GPS have given rise to large, highly complex datasets. These datasets could be utilized for making critical management decisions, but are often "messy" and difficult to interpret. Basic artificial intelligence algorithms (i.e., machine learning) are powerful tools that are shaping the world and must be taken advantage of in the life sciences. In ecology, machine learning algorithms are critical to helping resource managers synthesize information to better understand complex ecological systems. Machine Learning has a wide variety of powerful applications, with three general uses that are of particular interest to ecologists: (1) data exploration to gain system knowledge and generate new hypotheses, (2) predicting ecological patterns in space and time, and (3) pattern recognition for ecological sampling. Machine learning can be used to make predictive assessments even when relationships between variables are poorly understood. When traditional techniques fail to capture the relationship between variables, effective use of machine learning can unearth and capture previously unattainable insights into an ecosystem's complexity. Currently, many ecologists do not utilize machine learning as a part of the scientific process. This volume highlights how machine learning techniques can complement the traditional methodologies currently applied in this field.
- Trends in Control and Decision-Making for Human-Robot Collaboration Systems byISBN: 9783319405322Publication Date: 2017-02-09This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience from both physical human-robot interaction and social human-robot interaction. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human-one-robot collaboration; one-human-multiple-robot collaboration; and human-swarm collaboration. Individual topic areas include resource optimization (human and robotic), safety in collaboration, human trust in robot and decision-making when collaborating with robots, abstraction of swarm systems to make them suitable for human control, modeling and control of internal force interactions for collaborative manipulation, and the sharing of control between human and automated systems, etc. Control and decision-making algorithms feature prominently in the text, importantly within the context of human factors and the constraints they impose. Applications such as assistive technology, driverless vehicles, cooperative mobile robots, manufacturing robots and swarm robots are considered. Illustrative figures and tables are provided throughout the book. Researchers and students working in controls, and the interaction of humans and robots will learn new methods for human-robot collaboration from this book and will find the cutting edge of the subject described in depth.
Last Updated: Apr 19, 2023 9:33 AM
URL: https://libguides.umn.edu/IAS